Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages.
نویسندگان
چکیده
The neuronal diversity of the subplate and developing white matter in the mouse was studied using a variety of neuronal markers. The subplate was first visible in lateral cortical areas at E13, coinciding with the emergence of the cortical plate. During prenatal development, this layer was formed by morphologically heterogeneous neurons, subsets of which were immunoreactive for GABA- and calcium-binding proteins. From E18 onwards, a few subplate cells also contained neuropeptides. Colocalization experiments demonstrated that the percentages of neurons immunoreactive for each antigen were similar to those described in adult neocortex. By E15, subplate cells had received synaptic contacts. Moreover, a second early-neuronal population was conspicuous from E13 in the lower intermediate zone: the intermediate-subventricular population. Unlike subplate cells, these neurons were morphologically uniform, smaller and horizontally oriented. Nevertheless, a few of these cells also appeared within the ventricular zone, with a perpendicular/ oblique orientation. Most of these cells were GABA-positive and showed calbindin immunoreactivity. At the electron microscopic level, no synaptic contacts were found in these neurons. Tracing studies using DiI showed that subplate neurons were the first to send axons outside the neocortex towards the ganglionic eminence at E13. At E14, subplate axons and ingrowing thalamic fibers met in the striate primordium. Subplate cells retained their projection to the thalamus during prenatal development. Thalamocortical axons reached the subplate at E15, and 1 day later began to invade the upper cortical layers. Early callosal axons, in contrast, did not run through the subplate to reach the contralateral hemisphere, nor did subplate cells send out callosal fibers. Callosal axons ran just above the subventricular zone, intermingled with the intermediate-subventricular neuronal population. We conclude that the subplate neuronal population has a chemical heterogeneity reminiscent of that of the adult cortex and is crucial to the establishment of thalamocortical relationships, whereas the intermediate-subventricular neurons constituted a particular GABAergic population, which includes resident cells and tangentially migrating postmitotic neurons spatially related to the development of callosal connections.
منابع مشابه
GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملThalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path.
The distinct axonal tracts of the mature nervous system are defined during development by sets of substrate-bound and diffusible molecular signals that promote or restrict axonal elongation. In the adult cerebral cortex, efferent and afferent axons are segregated within the white matter. To define the relationship of growing efferent and afferent axons in the developing murine cortex to chondro...
متن کاملInfluences of the thalamus on the survival of subplate and cortical plate cells in cultured embryonic mouse brain.
The afferent and efferent connections of the cerebral neocortex develop simultaneously toward the end of embryogenesis. At this stage, the neocortex comprises two main cell-dense layers: the thicker and more superficial cortical plate (future layers 2-6) and the thinner underlying subplate. Many early thalamocortical projections temporarily innervate the subplate before leaving it to locate the...
متن کاملThe significance of the subplate for evolution and developmental plasticity of the human brain
The human life-history is characterized by long development and introduction of new developmental stages, such as childhood and adolescence. The developing brain had important role in these life-history changes because it is expensive tissue which uses up to 80% of resting metabolic rate (RMR) in the newborn and continues to use almost 50% of it during the first 5 postnatal years. Our hominid a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 10 8 شماره
صفحات -
تاریخ انتشار 2000